Лэп не гудит. Высокочастотный гул в квартире от наружной электропроводки. Резонанс механической системы

chicco - провели ОБСЛЕДОВАНИЕ ухом типовое двуранговое по методу С.Шумакова излучающих поверхностей? Какие поверхности условно бОльше излучают -иногда можно так направление найти поиска..Особенно -если таким типовым ОБСЛЕДОВАНИЕм и стены коридора, лестничной клетки и этажом выше- ниже пройти.
НЕ всегда -но иногда можно определить направление примерное..Но -не всегда..Замкнутые обьемы и резонансные искажения часто картину распределения интенсивностей маскируют.
И -вы немного не уточнил - свист имеет звук характер (от импульсного ИП, например, часто бывающих) , или -НЧ-гудение (гармоники и на СЧ и ВЧ -но возбуждение от 50-60 Гц)

Олег Перфилов писал(а):

Там все же видимо дело не в самом кабеле, кабель гудеть не может, а дело в том, что видимо электрики вмонтировали мощные пускатели или дроссели для ламп уличного освещения.

Слышал и не раз гул пускателя дряхлого -на несколько галогенных фонарей 150-500- ваттных подающего питание. НЕслабыйый такой звук от магнитного пускателя - мощное противное гудение. А если пускатели такие стоят ЖЕСТКО на близких к квартире топикстартера поверхностях - то всякие резонансные совпаления возможны..
Вполне вероятно, что если пускатели стоят на какой-то из поверхностей- прикреплены. тем более- если старье или -сердечники у них расшатаны(как в трансах некоторых.)
Впрочем - это только версия.. Исходя из того, что только ЭТИ цепи источник (не кондиционеры, моторы подкачки воды, вентиляция магазина или дома и т.п..Исходя из неопровержимости и доказательности наблюдения -

chicco писал(а):

Мною выявлена закономерность: при включении приподъездных светильников, на весь период их свечения и до момента выключения в квартире раздается высокочастотный гул. .

Но -на форумах ЗИ звуки от блока пускателей лифтовых моторов, висящих на стенах помещения моторного отсека -нехило возбуждали звуковые колебания в квартирах ниже этажом (по отзывам)
Как гудят и вибрируют полуисправные(!) дроссели ЛДС- ламп маломощных (тех 16-20 ваток, что в виде длинных и более коротких ламп под потолком еще массовы -тоже не раз слышал. (Случай интересный - сняв защитныую решетку -стукнул по поддону металлическому светильника на две ЛДС под потолком- резонансное противное исчезло.Тут влияло, получается, еще и что-то в метлистах..."напряжении -в смысле -свободы колебаний")
Так что ваша версия, Олег -вполне обьективна.
Ведь топикстартер не написал, на каком он этаже, где стоят пускатели (и дроссели -если ЛДС -светильники.., какие типы ламп и пускорегулирующих устройств и т.п)
...Если светильники не от 220-В питаются - тут не в курсе - стандартные ИП для 12-вольтных галогенок не слышал их шумной работы - БП простейшие импульсные их сразу выходит из строя, как и не в курсе, как гудят и иные типы ламп и ПРУ с 12(!)-вольтовым питанием . Врать не буду)
Выше- версия..
Не знаком будучи с системой питания -можно ведь предполагать и то, что топикстартер на ПЕРВОМ этаже- и у него к ближней комнате резонансные совпадения от трансформатора -разбалансировки трехфазного внизу, возникающие при включении ламп и т.п Хотя -мне всегда казалось, что на внутриподьездные светильники, в отличие от уличных -мнго мощи не идет. И трудно представить влияние подсоединяемой [b]малой мощи в таком последствии.Впрочем -имея некие знания в элетронике - не спец по электрике, трехфазному питанию и т.п и тем паче по схемам ввода-питаниям МКД)
(Обращение в РПН с жалобой на превышение шумов в НОЧНОЕ(!!) время(нормативы для ночи жестче!) может дать пользу?)

Почему гудят провода ЛЭП? Вы когда-нибудь задумывались об этом? А ведь ответ на этот вопрос может быть отнюдь не тривиальным, хотя и вполне бесхитростным. Давайте рассмотрим несколько вариантов объяснения, каждый из которых имеет право на существование.

Коронный разряд

Чаще всего приводят такую идею. Переменное электрическое поле вблизи провода ЛЭП электризует воздух вокруг провода, разгоняет свободные электроны, которые ионизируют молекулы воздуха, а они в свою очередь порождают . И вот, 100 раз в секунду загорается и гаснет коронный разряд вокруг провода, при этом воздух возле провода нагревается — остывает, расширяется - сжимается, и таким вот образом получается звуковая волна в воздухе, которая воспринимается нашим ухом как гудение провода.

Вибрируют жилы

Еще есть вот такая идея. Шум происходит от того, что переменный ток с частотой 50 Гц рождает переменное магнитное поле, которое вынуждает отдельные жилы в проводе (особенно стальные - в проводах марок типа АС-75, 120, 240) вибрировать, они как-бы соударяются друг с другом, и мы слышим характерный шум.

Кроме того, провода разных фаз расположены друг возле друга, их токи находятся в магнитных полях друг друга, и согласно закону Ампера на них действуют силы. Поскольку частота изменений полей 100 Гц — вот и вибрируют провода в магнитных полях друг друга от сил Ампера на этой частоте, и мы ее слышим.

Резонанс механической системы

И такая гипотеза кое-где встречается. Колебания частотой 50 или 100 Гц передаются на опору, и при определенных условиях опора, входя в резонанс, начинает издавать звук. На громкость и на резонансную частоту влияют плотность материала опоры, диаметр опоры, высота опоры, длина провода в пролете, а также его сечение и сила натяжения. Если в резонанс попадание есть — слышен шум. Если нет попадания в резонанс — шума нет или он тише.

Вибрация в магнитном поле Земли

Рассмотрим еще одну гипотезу. Провода вибрируют с частотой 100 Гц, а это значит, что на них постоянно оказывает действие переменная поперечная сила, связанная с током в проводах, с его величиной и направлением. Где же внешнее магнитное поле? Гипотетически, это может быть то магнитное поле, что всегда под ногами, которое ориентирует стрелку компаса, - .

Действительно, токи в проводах высоковольтных ЛЭП достигают в амплитуде нескольких сотен ампер, при этом протяженность проводов линий немала, и магнитное поле нашей планеты хоть и относительно мало (его индукция в средней полосе России составляет всего около 50 мкТл), тем не менее действует оно всюду по планете, и везде имеет не только горизонтальную, но и вертикальную составляющую, которая пересекает перпендикулярно как провода ЛЭП проложенные вдоль силовых линий магнитного поля Земли, так и те провода, что сориентированы поперек них или вообще под любым другим углом.

Для понимания процесса каждый может провести такой несложный эксперимент: возьмите автомобильный аккумулятор и гибкий акустический провод, сечением 25 кв.мм, длиной хотя бы 2 метра. Присоедините его на миг к клеммам аккумулятора. Провод подпрыгнет! Что это, если не импульс силы Ампера, подействовавшей на провод с током в магнитном поле Земли? Разве что провод подскочил в собственном магнитном поле...

Прохладою дышит

Там ветер вечерний, и в листьях шумит

И ветви колышет

И арфу лобзает... Но арфа молчит...

И вдруг. .. из молчанья

Поднялся протяжно задумчивый звон.

В. Жуковский

Эоловая арфа

Еще древние греки заметили, что струна, натянутая на ветру, иногда начинает мелодично звучать - петь. Возможно, уже тогда была известна эолова арфа, названная по имени бога ветра Эола. Эолова арфа состоит из рамки, на которой натянуто несколько струн; ее помещают в таком месте, где струны обдуваются ветром. Если даже ограничиться одной струной, можно получить целый ряд различных тонов. Нечто подобное, но с гораздо меньшим разнообразием тонов происходит, когда ветер приводит в движение телеграфные провода.

Довольно долго это и многие другие явления, связанные с обтеканием тел воздухом и водой, не были объяснены. Только Ньютон, основоположник современной механики, дал первый научный подход к решению таких задач.

По закону сопротивления движению тел в жидкости или газе, открытому Ньютоном, сила сопротивления пропорциональна квадрату скорости:

Здесь - скорость тела, - площадь его сечения, перпендикулярного направлению скорости, - плотность жидкости.

В дальнейшем выяснилось, что формула Ньютона верна не всегда. В том случае, когда скорость движения тела мала по сравнению со скоростями теплового движения молекул, закон сопротивления Ньютона уже не справедлив. Как мы уже обсуждали в предыдущих разделах, при достаточно медленном движении тела сила сопротивления пропорциональна его скорости (закон Стокса), а не ее квадрату, как это происходит при быстром движении. Такая ситуация возникает, например, при движении мелких капель дождя в облаке, при оседании осадка в стакане, при движении капель вещества А в «Волшебной лампе». Однако в современной технике с ее стремительными скоростями обычно справедлив закон сопротивления Ньютона.

Казалось бы, раз известны законы сопротивления, можно объяснить гудение проводов или пение эоловой арфы. Но это не так. Ведь если бы сила сопротивления была постоянной (или росла с увеличением скорости), то ветер просто натягивал бы струну, а не возбуждал ее звучания.

В чем же дело? Чтобы объяснить звучание струны, оказывается недостаточно тех простых представлений о силе сопротивления, которые мы только что разобрали. Давайте обсудим более детально некоторые типы течения жидкости вокруг неподвижного тела (это удобнее, чем рассматривать движение тела в неподвижной жидкости, а ответ, разумеется, будет тот же). Посмотрите на рис. 17.1. Это случай малой скорости жидкости. Линии тока жидкости огибают цилиндр (на рисунке показано сечение) и плавно продолжаются за ним. Такой поток называется ламинарным. Сила сопротивления в этом случае обязана своим происхождением внутреннему трению в жидкости (вязкости) и пропорциональна Скорость жидкости в любом месте, так же как и сила сопротивления, не зависит от времени (поток стационарный). Этот случай для нас не представляет интереса.

Рис. 17.1: Линии медленного ламинарного потока вокруг цилиндрической проволоки.

Но взгляните на рис. 17.2. Скорость потока увеличилась, и в области за цилиндром появились водовороты жидкости - вихри. Трение в этом случае уже не определяет полностью характер процесса. Все большую

роль начинают играть изменения количества движения, происходящие не в микроскопическом масштабе, а в масштабе, сравнимом с размерами тела. Сила сопротивления становится пропорциональной

Рис. 17.2: При больших скоростях за проволокой возникают вихри.

И, наконец, на рис. 17.3 скорость потока еще больше возросла, и вихри выстроились в правильные цепочки. Вот он, ключ к объяснению загадки! Эти цепочки вихрей, периодически срывающихся с поверхности струны, и возбуждают ее звучание, подобно тому, как вызывают звучание струн гитары периодические прикосновения к ним пальцев музыканта.

Рис. 17.3: В быстрых потоках за обтекаемым телом образуется периодическая цепочка вихрей.

Явление правильного расположения вихрей позади обтекаемого тела впервые было изучено экспериментально немецким физиком Бенаром в начале нашего века. Но только благодаря последовавшим вскоре работам Кармана такое течение, казавшееся сначала весьма своеобразным, получило объяснение. По имени этого ученого система периодических вихрей сейчас называется дорожкой Кармана.

По мере дальнейшего возрастания скорости у вихрей остается все меньше и меньше времени, чтобы расплываться на большую область жидкости. Вихревая зона становится узкой, вихри перемешиваются, и поток

становится хаотичным и нерегулярным (турбулентным). Правда, при очень больших скоростях в экспериментах последнего времени обнаружено появление какой-то новой периодичности, но детали ее до сих пор пока еще не ясны.

Может показаться, что вихревая дорожка Кармана - просто красивое явление природы, не имеющее практического значения. Но это не так. Провода линий электропередачи также колеблются под действием ветра, дующего с постоянной скоростью, из-за отрыва вихрей. В местах крепления проводов к опорам возникают значительные усилия, которые могут приводить к разрушениям. Под действием ветра раскачиваются высокие дымовые трубы.

Рис. 17.4: Раскачивание колебаний турбулентными вихрями привело в 1940 г. к разрушению Такомского моста в США.

Однако наиболее широкую известность, безусловно, приобрели колебания Такомского моста в Америке. Этот мост простоял всего несколько месяцев и разрушился 7 ноября 1940 г. На рис. 17.4 показан вид моста во время колебаний. Вихри отрывались от несущей конструкции проезжей части моста. После длительных исследований мост был воздвигнут снова, только поверхности, обдуваемые ветром, имели другую форму. Таким образом, была устранена причина, вызывавшая колебания моста.

Прохладою дышит Там ветер вечерний, и в листьях шумит И ветви колышет И арфу лобзает... Но арфа молчит... ..................................... И вдруг... из молчанья Поднялся протяжно задумчивый звон.

В. Жуковский. "Эоловая арфа"

Еще древние греки заметили, что струна, натянутая на ветру, иногда начинает мелодично звучать - петь. Возможно, уже тогда была известна эолова арфа, названная по имени бога ветра Эола. Эолова арфа состоит из рамки, на которой натянуто несколько струн; ее помещают в таком месте, где струны обдуваются ветром. Если даже ограничиться одной струной, можно получить целый ряд различных тонов. Нечто подобное, но с гораздо меньшим разнообразием тонов происходит, когда ветер приводит в движение телеграфные провода.

Довольно долго это явление и многие другие, связанные с обтеканием тел воздухом и водой, не были объяснены. Только Ньютон, основоположник современной механики, дал первый научный подход к решению таких задач.

По закону сопротивления движению тел в жидкости или газе, открытому Ньютоном, сила сопротивления пропорциональна квадрату скорости:

F = Kρv 2 S.

Здесь v - скорость тела, S - площадь его сечения, перпендикулярного направлению скорости, ρ - плотность жидкости.

В дальнейшем выяснилось, что формула Ньютона верна не всегда. В том случае, когда скорость движения тела мала по сравнению со скоростями теплового движения молекул, закон сопротивления Ньютона уже не справедлив.

Как мы уже обсуждали в предыдущих разделах, при достаточно медленном движении тела сила сопротивления пропорциональна его скорости (закон Стокса), а не ее квадрату, как это происходит при быстром движении. Такая ситуация возникает, например, при движении мелких капель дождя в облаке, при оседании осадка в стакане, при движении капель вещества А в "Волшебной лампе". Однако в современной технике с ее стремительными скоростями обычно справедлив закон сопротивления Ньютона.

Казалось бы, раз известны законы сопротивления, можно объяснить гудение проводов или пение эоловой арфы. Но это не так. Ведь если бы сила сопротивления была постоянной (или росла с увеличением скорости), то ветер просто натягивал бы струну, а не возбуждал ее звучания.

В чем же дело? Чтобы объяснить звучание струны, оказывается недостаточно тех простых представлений о силе сопротивления, которые мы только что разобрали. Давайте обсудим более детально некоторые типы течения жидкости вокруг неподвижного тела (это удобнее, чем рассматривать движение тела в неподвижной жидкости, а ответ, разумеется, будет тот же).

Посмотрите на рис. 1. Это случай малой скорости жидкости, Линии тока жидкости огибают цилиндр (на рисунке показано сечение) и плавно продолжаются за ним. Такой поток называется ламинарным . Сила сопротивления в этом случае обязана своим происхождением внутреннему трению в жидкости (вязкости) и пропорциональна v. Скорость жидкости в любом месте, так же как и сила сопротивления, не зависит от времени (поток стационарный ). Этот случай для нас не представляет интереса.

Но взгляните на рис. 2. Скорость потока увеличилась, и в области за цилиндром появились водовороты жидкости - вихри. Трение в этом случае уже не определяет полностью характер процесса. Все большую роль начинают играть изменения количества движения, происходящие не в микроскопическом масштабе, а в масштабе, сравнимом с размерами тела. Сила сопротивления становится пропорциональной v 2 .

И, наконец, на рис. 3 скорость потока еще больше возросла, и вихри выстроились в правильные цепочки. Вот он, ключ к объяснению загадки! Эти цепочки вихрей, периодически срывающихся с поверхности струны, и возбуждают ее звучание, подобно тому, как вызывают звучание струн гитары периодические прикосновения к ним пальцев музыканта.

Явление правильного расположения вихрей позади обтекаемого тела впервые было изучено экспериментально немецким физиком Бенаром в начале нашего века. Но только благодаря последовавшим вскоре работам Кармана такое течение, казавшееся сначала весьма своеобразным, получило объяснение. По имени этого ученого система периодических вихрей сейчас называется дорожкой Кармана.

По мере дальнейшего возрастания скорости у вихрей остается все меньше и меньше времени, чтобы расплываться на большую область жидкости. Вихревая зона становится узкой, вихри перемешиваются, и поток становится хаотичным и нерегулярным (турбулентным ). Правда, при очень больших скоростях в экспериментах последнего времени обнаружено появление какой-то новой периодичности, но детали ее до сих пор пока еще не ясны.

Может показаться, что вихревая дорожка Кармана - просто красивое явление природы, не имеющее практического значения. Но это не так. Провода линий электропередачи также колеблются под действием ветра, дующего с постоянной скоростью, из-за отрыва вихрей. В местах крепления проводов к опорам возникают значительные усилия, которые могут приводить к разрушениям. Под действием ветра раскачиваются высокие дымовые трубы.

Однако наиболее широкую известность, безусловно, приобрели колебания Такомского моста в Америке. Этот мост простоял всего несколько месяцев и разрушился 7 ноября 1940 г. На рис. 4 показан вид моста во время колебаний. Вихри отрывались от несущей конструкции проезжей части моста. После длительных исследований мост был воздвигнут снова, только поверхности, обдуваемые ветром, имели другую форму. Таким образом, была устранена причина, вызывающая колебания моста.

Чаще всего мы представляем себе опору ЛЭП в виде решетчатой конструкции. Лет 30 назад это был единственный вариант, да и в наши дни их продолжают строить. На место строительства привозят набор металлических уголков и шаг за шагом свинчивают из этих типовых элементов опору. Затем приезжает кран и ставит конструкцию вертикально. Такой процесс занимает довольно много времени, что сказывается на сроках прокладки линий, а сами эти опоры с унылыми решетчатыми силуэтами весьма недолговечны. Причина — слабая защита от коррозии. Технологическое несовершенство такой опоры дополняет простой бетонный фундамент. Если сделан он недобросовестно, например с применением раствора ненадлежащего качества, то спустя какое-то время бетон растрескается, в трещины попадет вода. Несколько циклов заморозки-оттаивания, и фундамент надо переделывать или серьезно ремонтировать.

Трубки вместо уголков

О том, что за альтернатива идет на смену традиционным опорам из черного металла, мы спросили представителей ПАО «Россети». «В нашей компании, которая является крупнейшим электросетевым оператором в России, — говорит специалист этой организации, — мы давно пытались найти решение проблем, связанных с решетчатыми опорами, и в конце 1990-х начали переходить на гранные опоры. Это цилиндрические стойки из гнутого профиля, фактически трубы, в поперечном сечении имеющие вид многогранника. Кроме того, мы стали применять новые методы антикоррозионной защиты, в основном метод горячего цинкования. Это электрохимический способ нанесения защитного покрытия на металл. В агрессивной среде слой цинка истончается, но несущая часть опоры остается невредимой».

Помимо большей долговечности новые опоры отличаются еще и простотой монтажа. Никаких уголков больше свинчивать не надо: трубчатые элементы будущей опоры просто вставляются друг в друга, затем соединение закрепляется. Смонтировать такую конструкцию можно в восемь-десять раз быстрее, чем собрать решетчатую. Соответствующие преобразования претерпели и фундаменты. Вместо обычного бетонного стали применять так называемые сваи-оболочки. Конструкция опускается в землю, к ней крепится ответный фланец, а на него уже ставится сама опора. Расчетный срок службы таких опор — до 70 лет, то есть примерно в два раза больше, чем у решетчатых.


Опоры электрических воздушных линий мы обычно представляем себе именно так. Однако классическая решетчатая конструкция постепенно уступает место более прогрессивным вариантам — многогранным опорам и опорам из композитных материалов.

Почему гудят провода

А провода? Они висят высоко над землей и издали похожи на толстые монолитные тросы. На самом деле высоковольтные провода свиты из проволоки. Обычный и повсеместно применяемый провод имеет стальной сердечник, который обеспечивает конструктивную прочность и находится в окружении алюминиевой проволоки, так называемых внешних повивов, через которые передается токовая нагрузка. Между сталью и алюминием проложена смазка. Она нужна для того, чтобы уменьшить трение между сталью и алюминием — материалами, имеющими разный коэффициент теплового расширения. Но поскольку алюминиевая проволока имеет круглое сечение, витки прилегают друг к другу неплотно, поверхность провода имеет выраженный рельеф. У этого недостатка есть два последствия. Во‑первых, в щели между витками проникает влага и вымывает смазку. Трение усиливается, и создаются условия для коррозии. В результате срок службы такого провода составляет не более 12 лет. Чтобы продлить срок службы, на провод порой надевают ремонтные манжеты, которые также могут стать причинами проблем (об этом чуть ниже). Кроме того, такая конструкция провода способствует созданию вблизи воздушной линии хорошо различимого гула. Происходит он из-за того, что переменное напряжение 50 Гц рождает переменное магнитное поле, которое заставляет отдельные жилы в проводе вибрировать, что влечет их соударения друг с другом, и мы слышим характерное гудение. В странах ЕС такой шум считается акустическим загрязнением, и с ним борются. Теперь такая борьба началась и у нас.


«Старые провода мы сейчас хотим заменить на провода новой конструкции, которую разрабатываем, — говорит представитель ПАО «Россети». — Это тоже сталь-алюминиевые провода, но проволока там применяется не круглого сечения, а скорее трапециевидного. Повив получается плотным, а поверхность провода гладкая, без щелей. Влага внутрь попасть почти не может, смазка не вымывается, сердечник не ржавеет, и срок службы такого провода приближается к тридцати годам. Провода схожей конструкции уже используются в таких странах, как Финляндия и Австрия. Линии с новыми проводами есть и в России — в Калужской области. Это линия «Орбита-Спутник» длиной 37 км. Причем там провода имеют не просто гладкую поверхность, но и другой сердечник. Он выполнен не из стали, а из стекловолокна. Такой провод легче, но прочнее на разрыв, чем обычный сталь-алюминиевый».

Однако самым последним конструкторским достижением в данной области можно считать провод, созданный американским концерном 3M. В этих проводах несущая способность обеспечивается только токопроводящими повивами. Там нет сердечника, но сами повивы армированы оксидом алюминия, чем достигается высокая прочность. У этого провода прекрасная несущая способность, и при стандартных опорах он за счет своей прочности и малого веса может выдерживать пролеты длиной до 700 м (стандарт 250−300 м). Кроме того, провод очень стоек к тепловым нагрузкам, что обусловливает его использование в южных штатах США и, например, в Италии. Однако у провода от 3M есть один существенный минус — слишком высокая цена.


Оригинальные «дизайнерские» опоры служат несомненным украшением ландшафта, однако вряд ли они получат широкое распространение. В приоритете у электросетевых компаний надежность передачи энергии, а не дорогостоящие «скульптуры».

Лед и струны

У воздушных линий электропередач есть свои естественные враги. Один из них — обледенение проводов. Особенно это бедствие характерно для южных районов России. При температуре около нуля капли измороси падают на провод и замерзают на нем. Происходит образование кристаллической шапки на верхней части провода. Но это только начало. Шапка под своей тяжестью постепенно проворачивает провод, подставляя замерзающей влаге другую сторону. Рано или поздно вокруг провода образуется ледяная муфта, и если вес муфты превысит 200 кг на метр, провод оборвется и кто-то останется без света. В компании «Россети» есть свое ноу-хау по борьбе со льдом. Участок линии с обледеневшими проводами отключается от линии, но подключается к источнику постоянного тока. При использовании постоянного тока омическое сопротивление провода можно практически не учитывать и пропускать токи, скажем, в два раза сильнее, чем расчетное значение для переменного тока. Провод нагревается, и лед плавится. Провода сбрасывают ненужный груз. Но если на проводах есть ремонтные муфты, то возникает дополнительное сопротивление, и вот тогда провод может и перегореть.


Другой враг — высокочастотные и низкочастотные колебания. Натянутый провод воздушной линии — это струна, которая под воздействием ветра начинает вибрировать с высокой частотой. Если эта частота совпадет с собственной частотой провода и произойдет совмещение амплитуд, провод может порваться. Чтобы справиться с данной проблемой, на линиях устанавливают специальные устройства — гасители вибрации, имеющие вид тросика с двумя грузиками. Эта конструкция, имеющая свою частоту колебаний, расстраивает амплитуды и гасит вибрацию.

С низкочастотными колебаниями связан такой вредный эффект, как «пляска проводов». Когда на линии происходит обрыв (например, из-за образовавшегося льда), возникают колебания проводов, которые идут волной дальше, через несколько пролетов. В результате могут погнуться или даже упасть пять-семь опор, составляющих анкерный пролет (расстояние между двумя опорами с жестким креплением провода). Известное средство борьбы с «пляской» — установление межфазных распорок между соседними проводами. При наличии распорки провода будут взаимно гасить свои колебания. Другой вариант — использование на линии опор из композитных материалов, в частности из стеклопластика. В отличие от металлических опор, композитная имеет свойство упругой деформации и легко «отыграет» колебания проводов, нагнувшись, а затем восстановив вертикальное положение. Такая опора может предотвратить каскадное падение целого участка линии.


На фото отчетливо видна разница между традиционным высоковольтным проводом и проводом новой конструкции. Вместо проволоки круглого сечения использована предварительно деформированная проволока, а место стального сердечника занял сердечник из композита.

Опоры-уникумы

Разумеется, существуют разного рода уникальные случаи, связанные с прокладкой воздушных линий. Например, при установке опор в обводненный грунт или в условиях вечной мерзлоты обычные сваи-оболочки для фундамента не подойдут. Тогда используются винтовые сваи, которые ввинчивают в грунт как шуруп, чтобы достичь максимально прочного основания. Особый случай — это прохождение ЛЭП широких водных преград. Там используются специальные высотные опоры, которые весят раз в десять больше обычных и имеют высоту 250−270 м. Поскольку длина пролета может составлять более двух километров, применяется особый провод с усиленным сердечником, который дополнительно поддерживается грузотросом. Так устроен, например, переход ЛЭП через Каму с длиной пролета 2250 м.


Отдельную группу опор представляют конструкции, призванные не только держать провода, но и нести в себе определенную эстетическую ценность, например опоры-скульптуры. В 2006 году компания «Россети» инициировала проект с целью разработать опоры с оригинальным дизайном. Были интересные работы, но авторы их, дизайнеры, часто не могли оценить возможность и технологичность инженерного воплощения этих конструкций. Вообще надо сказать, что опоры, в которые вложен художественный замысел, как, например, опоры-фигуры в Сочи, обычно устанавливаются не по инициативе сетевых компаний, а по заказу каких-то сторонних коммерческих или государственных организаций. Например, в США популярна опора в виде буквы M, стилизованной под логотип сети фастфуда «Макдоналдс».