Ваттметры. Виды и применение. Работа. Примеры и параметры. Схема включения ваттметра Что такое ваттметр и как им пользоваться

Электронные ваттметры на базе электронных вольтметров бывают параметрического и модуляционного типов. Параметрические ваттметры подразделяются на ваттметры прямого и косвенного преобразования.

Принцип работы параметрических ваттметр ов с прямым преобразованием основан на реализации функциональной зависимости вида:

Таким образом, в результате выполнения указанных математических операций с двумя сигналами можно получить их произведение, что и требуется при измерении мощности сигнала. Для этой цели ток предварительно преобразуется в напряжение, а возведение значений сигналов в квадрат осуществляется с помощью функциональных преобразователей.

Рис. 9.5 Структурная схема квадратурного ваттметра.

Модуляционные ваттметры основаны на двойной модуляции импульсных сигналов (широтно-импульсной – ШИМ и амплитудно-импульсной - АИМ)).

В счетчиках электроэнергии с разделением времени используется своеобразный, но точный метод измерения электрической мощности. Такой прибор имеет два канала. Один канал представляет собой электронный ключ, который пропускает или не пропускает входной сигнал Y (или обращенный входной сигнал Y) на фильтр нижних частот. Состоянием ключа управляет выходной сигнал второго канала с отношением временных интервалов «закрыто»/«открыто», пропорциональным его входному сигналу. Средний сигнал на выходе фильтра равен среднему по времени произведению двух входных сигналов. Если один входной сигнал пропорционален напряжению на нагрузке, а другой – току нагрузки, то выходное напряжение пропорционально мощности, потребляемой нагрузкой.

Погрешность таких счетчиков промышленного изготовления составляет 0,02% на частотах до 3 кГц (лабораторных – порядка всего лишь 0,0001%). Как приборы высокой точности они применяются в качестве эталонных счетчиков для поверки рабочих средств измерения.

Дискретизирующие ваттметры и счетчики электроэнергии основаны на принципе цифрового вольтметра, но имеют два входных канала, дискретизирующих параллельно сигналы тока и напряжения. Каждое дискретное значение, представляющее мгновенные значения сигнала напряжения в момент дискретизации, умножается на соответствующее дискретное значение сигнала тока, полученное в тот же момент времени. Среднее по времени таких произведений есть мощность в ваттах:

.

Сумматор, накапливающий произведения дискретных значений с течением времени, дает полную электроэнергию в ватт-часах. Погрешность счетчиков электроэнергии может составлять всего лишь 0,01%.

Индукционный счетчик представляет собой не что иное, как маломощный электродвигатель переменного тока с двумя обмотками – токовой и обмоткой напряжения. Проводящий диск, помещенный между обмотками, вращается под действием крутящего момента, пропорционального потребляемой мощности. Этот момент уравновешивается токами, наводимыми в диске постоянным магнитом, так что частота вращения диска пропорциональна потребляемой мощности. Число оборотов диска за то или иное время пропорционально полной электроэнергии, полученной за это время потребителем. Число оборотов диска считает механический счетчик, который показывает электроэнергию в киловатт-часах. Приборы такого типа широко применяются в качестве бытовых счетчиков электроэнергии. Их погрешность, как правило, составляет 0,5%; они отличаются большим сроком службы при любых допустимых уровнях тока.

Ваттметр – измерительный прибор, имеющий назначение определять работу совершаемую электрическим током в единицу времени для прохождения тока через какой-либо проводник (определение мощности электрического тока или электромагнитного сигнала).

Ваттметр может определить количество ваттов необходимых для получения некоторой силы электрического света в каждую секунду времени или определить величину выполняемой работы в единицу времени каким-либо электрическим прибором. Работа совершаемая электрическим прибором в единицу времени (его мощность) определяется в ваттах и является произведением числа амперов (сила тока) потребляемых данным видом электрических потребителей на разность потенциалов (+ -) концов этой части цепи измеряемой в вольтах.

Для определения мощности электрического тока и используются ваттметры , представляющие собой не что иное, как электродинамометр. Проходящий ток распределяется на две части, одна из которых является, по сути, контролем, а вторая опытом, изменяя сопротивление на опытной части и измеряя разность потенциалов на выходе и определяется мощность электрического тока.

По назначению и диапазону частот ваттметры можно разделить на три основные категории:
– низкочастотные (и постоянного тока);
– радиочастотные;
– оптические.

Ваттметры радиодиапазона по назначению делятся на два вида: проходящей мощности, включаемые в разрыв линии передачи, и поглощаемой мощности, подключаемые к концу линии в качестве согласованной нагрузки. В зависимости от способа функционального преобразования измерительной информации и ее вывода пользователю ваттметры бывают аналоговые (показывающие и самопишущие) и цифровые.

Низкочастотные ваттметры используются преимущественно в сетях электропитания промышленной частоты для измерения потребляемой мощности, могут быть однофазные и трехфазные. Отдельную подгруппу составляют варметры - измерители реактивной мощности. Цифровые приборы обычно совмещают в себе возможность измерения активной и реактивной мощности.

Радиочастотные ваттметры образуют весьма большую и широко используемую подгруппу ваттметров радиодиапазона. Деление этой подгруппы связано в основном с применением различных типов первичных преобразователей. Выпускаемые ваттметры используют преобразователи на базе термистора, термопары или пикового детектора; значительно реже, применяются датчики, основанные на других принципах. При работе с ваттметрами поглощаемой мощности следует помнить, что из-за несогласования входного сопротивления приемных датчиков с волновым сопротивлением линии, часть энергии отражается и реально ваттметр измеряет не реальную мощность линии, а поглощенную, которая отличается от действительной.

Принцип действия термисторного преобразователя состоит в зависимости сопротивления термистора от температуры его нагрева, которая, в свою очередь зависит от рассеиваемой мощности сигнала, подаваемого на него. Измерение осуществляется методом сравнения мощности измеряемого сигнала, рассеиваемой в термисторе и разогревающей его, с мощностью тока низкой частоты, вызывающей такой же нагрев термистора. К недостаткам термисторных ваттметров относится их малый диапазон регистрации – несколько милливатт.

В ваттметрах проходящей мощности в качестве первичного преобразователя используется устройство, позволяющее ответвлять от основного тракта передачи очень небольшую долю энергии. Отведенная часть энергии подается на вторичный преобразователь, откуда сигнал измерительной информации подается на функциональный преобразователь и, далее, на показывающее устройство.

По предметам школьной программы набирают все большую популярность среди учащихся. В последнее время именно доступность интернета и мобильных гаджетов привела к резкому скачку числа участников таких мероприятий.
Но, если раньше участниками олимпиад по школьным предметам были в основном только отличники и успевающие ученики, то сейчас участником всероссийской олимпиады может стать совершенно любой школьник.

Портал всероссийских дистанционных олимпиад «Отличник» на своей странице в сети выложил отчет о результатах своих дистанционных олимпиад за последние годы. Из этого отчета видно, какие школьные предметы можно считать сводными для освоения и в каких заданиях участники чаще всего делают ошибки.

Самыми сложными, по мнению организаторов олимпиад и конкурсов «Отличник», являются предметы физика и химия. Олимпиада по химии включает в себя множество разных заданий из разделов неорганической и органической химии, и все они имеют примерно одинаковый процент ошибок участников. И совсем другая картина видна с заданиями по физике. О них и пойдет речь в данной статье.

27.06.2019

Среди общепромышленных, употребляемых для учета продукции и сырья, распространены товарные, автомобильные, вагонные, вагонеточные и др. Технологические служат для взвешивания продукции в ходе производства при технологически непрерывных и периодических процессах. Лабораторные применяют для определения влажности материалов и полуфабрикатов, проведения физикохимического анализа сырья и других целей. Различают технические, образцовые, аналитические и микроаналитнческие .

Можно разделить на ряд типов в зависимости от физических явлений, на которых основан принцип их действия. Наиболее распространены приборы магнитоэлектрической, электромагнитной, электродинамической, ферродинамической и индукционной систем.

Схема прибора магнитоэлектрической системы показана на рис. 1.

Неподвижная часть состоит из магнита 6 и магнитопровода 4 с полюсными наконечниками 11 и 15, между которыми установлен строго центрированный стальной цилиндр 13. В зазоре между цилиндром и полюсными наконечниками, где сосредоточено равномерное радиально направленное , размещается рамка 12 из тонкой изолированной медной проволоки.

Рамка укреплена на двух осях с кернами 10 и 14, упирающихся в подпятники 1 и 8. Противодействующие пружины 9 и 17 служат токоподводами, соединяющими обмотку рамки с электрической схемой и входными зажимами прибора. На оси 4 укреплена стрелка 3 с балансными грузиками 16 и противодействующая пружина 17, соединенная с рычажком корректора 2.

01.04.2019

1.Принцип активной радиолокации.
2.Импульсная РЛС. Принцип работы.
3.Основные временные соотношения работы импульсной РЛС.
4.Виды ориентации РЛС.
5.Формирование развертки на ИКО РЛС.
6.Принцип функционирования индукционного лага.
7.Виды абсолютных лагов. Гидроакустический доплеровский лаг.
8.Регистратор данных рейса. Описание работы.
9.Назначение и принцип работы АИС.
10.Передаваемая и принимаемая информация АИС.
11.Организация радиосвязи в АИС.
12.Состав судовой аппаратуры АИС.
13.Структурная схема судовой АИС.
14.Принцип действия СНС GPS.
15.Сущность дифференциального режима GPS.
16.Источники ошибок в ГНСС.
17.Структурная схема приемника GPS.
18.Понятие об ECDIS.
19.Классификация ЭНК.
20.Назначение и свойства гироскопа.
21.Принцип работы гирокомпаса.
22.Принцип работы магнитного компаса.

Соединение кабелей — технологический процесс получения электрического соединения двух отрезков кабеля с восстановлением в месте соединения всех защитных и изоляционных оболочек кабеля и экранных оплеток.

Перед соединением кабелей измеряют сопротивление изоляции . У неэкранированных кабелей для удобства измерений один вывод мегаомметра поочередно подключают к каждой жиле, а второй — к соединённым между собой остальным жилам. Сопротивление изоляции каждой экранированной жилы измеряют при подключении выводов

МЕТОДИЧЕСКОЕ ПОСОБИЕ К ПРАКТИЧЕСКОЙ РАБОТЕ: «ЭКСПЛУАТАЦИЯ СИСТЕМ ОХЛАЖДЕНИЯ СЭУ»

ПО ДИСЦИПЛИНЕ: «ЭКСПЛУАТАЦИЯ ЭНЕРГЕТИЧЕСКИХ УСТАНОВОК И БЕЗОПАСНОЕ НЕСЕНИЕ ВАХТЫ В МАШИННОМ ОТДЕЛЕНИИ »

ЭКСПЛУАТАЦИЯ СИСТЕМЫ ОХЛАЖДЕНИЯ

Назначение системы охлаждения:

  • отвод теплоты от ГД;
  • отвод теплоты от вспомогательного оборудования;
  • подвод теплоты к ОУ и другому оборудованию (ГД перед пуском, ВДГ поддержание в "горячем" резерве и т.д.);
  • прием и фильтрация забортной воды;
  • продувание кингстонных ящиков летом от забивания медузами, водорослями, грязью, зимой - ото льда;
  • обеспечение работы ледовых ящиков и др.
Структурно система охлаждения подразделяется на пресной воды и систему охлаждения заборной воды. Системы охлаждения АДГ выполняются автономно.

Рис. 1. Система охлаждения дизелей


1 - охладитель топлива; 2 - маслоохладитель турбонагнетателей; 3 - расширительная цистерна ГД; 4 - водоохладитель ГД; 5 - маслоохладитель ГД; 6 - кингстонный ящик; 7 - фильтры забортной воды; 8 - кингстонный ящик; 9 - приемные фильтры ВДГ; 10 - насосы забортной воды ВДГ; 11 - насос пресной воды ГД; 12 - основной и резервный насосы забортной воды ГД; 13 - маслоохладитель ВДГ; 14 - водоохладитель ВДГ; 15 - ВДГ; 16 - расширительная цистерна ВДГ; 17 - опорный подшипник валопровода; 18 - главный упорный подшипник; 19 - главный двигатель; 20 - охладитель наддувочного воздуха; 21 - вода на охлаждение компрессоров; 22 - заполнение и пополнение системы пресной воды; 23 - подключение системы прогрева ДВС; 1оп - пресная вода; 1оз - забортная вода.

Наличие двух катушек у электродинамического прибора и возможность включения их в две разные цепи позволяет использовать эти приборы для измерения мощности электрического тока, т. е. как ваттметры.

Из выражения для угла поворота подвижной системы электродинамического прибора (2.12) следует, что, если неподвижную катушку включить последовательно нагрузке z (рис. 2-12), а последовательно с подвижной катушкой включить добавочное сопротивление Яд так, чтобы эту катушку можно было включать параллельно нагрузке, тогда ток в подвижной катушке равен

где - сопротивление катушки; U - напряжение на нагрузке; - постоянная данного прибора по мощности; Р - мощность, потребляемая нагрузкой. Такой прибор называют ваттметром. Его шкала равномерная.

Для измерения электрической мощности в цепях переменного тока используют ваттметры активной и реактивной мощности.

Ваттметр активной мощности. Если в цепь подвижной катушки включить активное добавочное сопротивление так, чтобы общее сопротивление этой цепи R было равно

тогда при напряжении и в сети и при токе i в нагрузке

ток в подвижной катушке равен

Мгновенное значение вращающего момента в этом случае равно

а среднее за период значение этого момента

Следовательно, ваттметр с активным добавочным сопротивлением в цепи подвижной катушки измеряет активную мощность цепи переменного тока.

Полученный вывод имеет простое физическое объяснение. В самом деле, если в цепь с индуктивностью включить амперметр, вольтметр и ваттметр (рис. 2-13), то , так как подвижная система вольтметра поворачивается под действием только приложенного напряжения, независимо от фазы этого напряжения (точнее, под действием тока в катушке, пропорционального приложенному напряжению), а подвижная часть амперметра поворачивается под действием только тока в катушке, независимо от фазы этого тока. Что касается подвижной части (катушки) ваттметра, то она поворачивается только в том случае, когда токи в обеих катушках не равны нулю, иначе не будет взаимодействия. Но в рассматриваемой цепи ток подвижной катушки максимален, когда ток в цепи i равен нулю, и наоборот. Прибор ничего не покажет. Этого и следовало ожидать, так как нагрузка то запасает энергию в магнитном поле, то возвращает в сеть.

Из графика токов данной цепи с индуктивностью (рис. 2-14) следует, что токи совпадают по направлению (на графике - по одну сторону от оси времени) только в течение двух (через одну) четвертей периода за период, а в две другие четверти периода токи имеют противоположные направления. Это означает, что направление вращающего момента изменяется четыре раза за период. Поэтому подвижная система ваттметра в течение периода будет испытывать действие четырех одинаковых по значению, но противоположных по направлению толчков и прибор ничего не покажет, так как вращающий момент, действующий на подвижную систему, определяется его средним значением за период.

Если же угол сдвига между токами невелик (рис. 2-15), то в течение периода положительные значения вращающего момента сильно превосходят отрицательные (по времени и по значениям) и подвижная система ваттметра повернется под действием среднего

значения реагируя на активную мощность, потребляемую данной нагрузкой.

Итак, ваттметр показывает активную мощность, потребляемую из сети.

Ваттметр реактивной мощности. В этом ваттметре последовательно с подвижной катушкой специально включается индуктивное добавочное сопротивление (рис. 2-16) такое, что

Пусть в цепи действует приложенное напряжение и нагрузка создает ток

Тогда мгновенное значение вращающего момента равно

После подстановки и преобразований получим:

Среднее за период значение вращающего момента равно

Отсюда и следует, что ваттметр с индуктивным сопротивлением в цепи подвижной катушки показывает реактивную мощность цепи переменного тока. Такой вывод объясняется просто: в случае, например, чисто индуктивной нагрузки, когда из сети безвозвратно не потребляется энергия, такая схема искусственно сдвигает фазу тока в подвижной катушке до совпадения с фазой тока в неподвижной, поэтому ваттметр показывает значение реактивной мощности.

Итак, у электродинамического ваттметра две катушки: одна - токовая, включаемая последовательно нагрузке, другая- катушка напряжения, включаемая параллельно нагрузке, потребляемую мощность которой необходимо измерить.

Для правильного включения прибора (чтобы стрелка отклонялась в нужную сторону) один из зажимов его обмотки помечают звездочкой эти зажимы ваттметра называют генераторными. Их следует подключать к тому зажиму нагрузки, который соединен с генератором (сетью).

ВАТТМЕТР , прибор для измерения электрической мощности, расходуемой в каком-нибудь участке электрической цепи. В технике и в лабораторной практике применяется ваттметр двух типов: электродинамический и индукционный.

Основан на взаимодействии токов и состоит из двух обмоток (фиг. 1): неподвижной а , несущей весь ток цепи I, и подвижной b, несущей ток i, пропорциональный напряжению цепи. Подвижная обмотка соединяется последовательно с большим безындукционным сопротивлением и включается параллельно приемнику. Ток к подвижной обмотке подводится по двум спиральным пружинкам с, которые в то же время создают вращающий момент, противодействующий повороту обмотки.

При синусоидальных токах, если Е - эффективное напряжение, I - эффективная сила тока однофазной цепи и ϕ - угол сдвига фаз между током и напряжением, мощность Р, потребляемая в цепи, выражается произведением:

В электродинамических ваттметрах взаимодействие двух магнитных потоков Ф 1 и Ф 2 , созданных токами I и i в обмотках, образует момент вращения:

Здесь α - угол отставания тока i в подвижной обмотке ваттметра, имеющей индуктивность L. Благодаря наличию угла α момент М не вполне пропорционален мощности Р; поэтому расчет прибора необходимо вести так, чтобы создаваемая углом α ошибка ваттметра не превосходила пределов точности отсчета. Так как

то угол α можно уменьшить введением большого добавочного сопротивления в цепь подвижной обмотки. Это сопротивление изготовляется из материала с ничтожным температурным коэффициентом и делает прибор нечувствительным к изменениям температуры окружающей среды. Из преобразования формулы (2)

следует, что это же добавочное сопротивление делает прибор малочувствительным и к изменению частоты тока, так как при малом значении дроби можно принять Электродинамический ваттметр является прецизионным прибором и применяется гл. обр. в лабораторной практике. Достоинства его: большая точность (до 0,25%), пригодность для постоянного и переменного тока, независимость показаний от частоты тока, формы кривой напряжения и температуры. Недостатки: легкая конструкция, слабые магнитные поля, небольшой вращающий момент и, вследствие этого, сильное влияние внешнего поля на показания ваттметра. Для уменьшения этого влияния и приспособления электродинамического ваттметра к условиям работы на распределительных щитах, применяют железный кожух, защищающий механизм ваттметра от действия внешнего поля, или устраивают весь магнитопровод из железа, усиливая таким образом поле и вращающий момент. Механизм электродинамического ваттметра представлен на фиг. 2.

Отличается от электродинамического тем, что ток в подвижную систему не подводится извне, а индуктируется токами в неподвижных обмотках (фиг. 3).

Индукционный ваттметр состоит из кольцеобразного сердечника а с двумя парами выступающих внутрь полюсов b, охватывающих центральный цилиндрический сердечник с; оба сердечника набраны из листового железа. В зазоре между полюсами и цилиндром вращается на опорах тонкостенный алюминиевый барабан d. На каждом полюсе кольцеобразного сердечника расположена обмотка; обмотки диаметрально противоположных полюсов соединены последовательно. Одна пара обмоток несет весь ток цепи, другая - ток, пропорциональный напряжению цепи, причем в этой обмотке искусственно создается отставание тока от напряжения на 90°. При включении такого ваттметра в цепь переменного тока пульсация двух полей, смещенных на 1/4 периода во времени и на 90° в пространстве, создает вращающееся поле, которое индуктирует ток в барабане и приводит его во вращение. Противодействующий момент развивается спиральными или цилиндрическими пружинками. Вращающий момент индукционного ваттметра выражается формулой:

где с - частота тока и ϱ - удельное сопротивление материала барабана. Индукционный ваттметр не м. б. отнесен к классу прецизионных приборов, так как показания его зависят от формы кривой напряжения, от частоты тока и от температуры среды. Индукционный ваттметр пригоден только для переменного тока и градуируется на определенную частоту. Достоинства его: прочная и сильная конструкция, слабое влияние внешних полей. Поэтому индукционный ваттметр является прекрасным техническим прибором и с успехом применяется на распределительных щитах. Механизм индукционного ваттметра показан на фиг. 4.

Обычно ваттметры выполняются на умеренные токи и напряжения: 100-200 А, 120 V. Для напряжений до 600 V применяются внешние добавочные сопротивления в цепи напряжения.

Для токов больше 200 А и напряжений выше 600 V применяются пятиамперные ваттметры на 100-120 V в соединении с трансформаторами тока и напряжения. Для измерения мощности трехфазного тока имеются различные специальные конструкции ваттметра: 1) однофазный ваттметр, включаемый на линейный ток и фазовое напряжение; ваттметр измеряет фазовую мощность, но градуируется на мощность Р трехфазного тока: он годен только для равномерной нагрузки; 2) однофазный ваттметр, включаемый на линейный ток и линейное напряжение по схеме фиг. 5; в цепь напряжения включается дроссель, дающий добавочный сдвиг фазы тока в обмотке напряжения на 30°; ваттметр градуируется на мощность трехфазного тока, но дает правильные показания только при равномерной нагрузке всех трех фаз; применяется в сетях с недоступной нулевой точкой;

3) ваттметр с двумя однофазными системами, действующими на общую ось; включается на два линейных тока - I 1 и I 2 и два линейных напряжения – Е 1-3 и Е 2-3 по схеме фиг. 6; ваттметр измеряет мощность трехфазного тока; годен для неравномерной нагрузки и для трехпроводной системы (без нулевого провода);

4) ваттметр с двумя однофазными системами, действующими на общую ось, причем каждая катушка тока состоит из 2 обмоток; включается на два фазовых напряжения – E 1-0 и Е 2-0 и три тока по схеме фиг. 7; ваттметр измеряет мощность трехфазного тока; годен для неравномерной нагрузки и для четырехпроводной системы (трехфазная с нулевым проводом).